contestada

What force (in N) must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2100 kg car (a large car) resting on the slave cylinder

Respuesta :

Complete Question:

What force (in N) must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2100 kg car (a large car) resting on the slave cylinder ? The master cylinder has a 2.00-cm diameter and the slave has a 24.0-cm diameter

Answer:

[tex]F_1 = 142.92N[/tex]

Explanation:

Given

[tex]m = 2100kg[/tex] --- mass

[tex]D_1 = 2.00\ cm[/tex] --- diameter of the large cylinder

[tex]D_2 = 24.0\ cm[/tex] --- diameter of the slave cylinder

To do this, we apply Archimedes' principle of buoyancy which implies that:

[tex]P = \frac{F_1}{A_1} = \frac{F_2}{A_2}[/tex]

Where

[tex]F_1 = Force\ on\ the\ master\ cylinder[/tex]

[tex]F_2 = Force\ on\ the\ slave\ cylinder[/tex]

[tex]A_1 = Area\ of\ the\ master\ cylinder[/tex]

[tex]F_2 = Area\ of\ the\ small\ cylinder[/tex]

Calculating the area of the master cylinder.

[tex]A_1 = \pi r_1^2[/tex]

[tex]r_1 = \frac{1}{2}D_1 = \frac{1}{2} * 2.00cm = 1.00cm[/tex]

[tex]A_1 = \pi* 1^2[/tex]

[tex]A_1 = \pi * 1[/tex]

[tex]A_1 = \pi[/tex]

Calculating the area of the slave cylinder.

[tex]A_2 = \pi r_2^2[/tex]

[tex]r_2 = \frac{1}{2}D_2 = \frac{1}{2} * 24.00cm = 12.00cm[/tex]

[tex]A_2 = \pi* 12^2[/tex]

[tex]A_2 = \pi* 144[/tex]

[tex]A_2 = 144\pi[/tex]

Substitute these values in:

[tex]P = \frac{F_1}{A_1} = \frac{F_2}{A_2}[/tex]

[tex]\frac{F_1}{\pi} = \frac{F_2}{144\pi}[/tex]

Multiply both sides by [tex]\pi[/tex]

[tex]\pi * \frac{F_1}{\pi} = \frac{F_2}{144\pi} * \pi[/tex]

[tex]F_1 = \frac{F_2}{144}[/tex]

The force exerted on the slave cylinder (F2) is calculated as:

[tex]F_2 = mg[/tex]

[tex]F_2 = 2100 * 9.8[/tex]

[tex]F_2 = 20580[/tex]

Substitute 20580 for F2 in [tex]F_1 = \frac{F_2}{144}[/tex]

[tex]F_1 = \frac{20580}{144}[/tex]

[tex]F_1 = 142.92N[/tex]

Hence, the force exerted on the master cylinder is approximately 142.92N

ACCESS MORE