Respuesta :
Complete Question:
What force (in N) must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2100 kg car (a large car) resting on the slave cylinder ? The master cylinder has a 2.00-cm diameter and the slave has a 24.0-cm diameter
Answer:
[tex]F_1 = 142.92N[/tex]
Explanation:
Given
[tex]m = 2100kg[/tex] --- mass
[tex]D_1 = 2.00\ cm[/tex] --- diameter of the large cylinder
[tex]D_2 = 24.0\ cm[/tex] --- diameter of the slave cylinder
To do this, we apply Archimedes' principle of buoyancy which implies that:
[tex]P = \frac{F_1}{A_1} = \frac{F_2}{A_2}[/tex]
Where
[tex]F_1 = Force\ on\ the\ master\ cylinder[/tex]
[tex]F_2 = Force\ on\ the\ slave\ cylinder[/tex]
[tex]A_1 = Area\ of\ the\ master\ cylinder[/tex]
[tex]F_2 = Area\ of\ the\ small\ cylinder[/tex]
Calculating the area of the master cylinder.
[tex]A_1 = \pi r_1^2[/tex]
[tex]r_1 = \frac{1}{2}D_1 = \frac{1}{2} * 2.00cm = 1.00cm[/tex]
[tex]A_1 = \pi* 1^2[/tex]
[tex]A_1 = \pi * 1[/tex]
[tex]A_1 = \pi[/tex]
Calculating the area of the slave cylinder.
[tex]A_2 = \pi r_2^2[/tex]
[tex]r_2 = \frac{1}{2}D_2 = \frac{1}{2} * 24.00cm = 12.00cm[/tex]
[tex]A_2 = \pi* 12^2[/tex]
[tex]A_2 = \pi* 144[/tex]
[tex]A_2 = 144\pi[/tex]
Substitute these values in:
[tex]P = \frac{F_1}{A_1} = \frac{F_2}{A_2}[/tex]
[tex]\frac{F_1}{\pi} = \frac{F_2}{144\pi}[/tex]
Multiply both sides by [tex]\pi[/tex]
[tex]\pi * \frac{F_1}{\pi} = \frac{F_2}{144\pi} * \pi[/tex]
[tex]F_1 = \frac{F_2}{144}[/tex]
The force exerted on the slave cylinder (F2) is calculated as:
[tex]F_2 = mg[/tex]
[tex]F_2 = 2100 * 9.8[/tex]
[tex]F_2 = 20580[/tex]
Substitute 20580 for F2 in [tex]F_1 = \frac{F_2}{144}[/tex]
[tex]F_1 = \frac{20580}{144}[/tex]
[tex]F_1 = 142.92N[/tex]
Hence, the force exerted on the master cylinder is approximately 142.92N