Answer:
[tex]P(L\ or\ C) = 0.13[/tex]
Step-by-step explanation:
Given
Represent loose threads with L, Crooked stitching with C.
So, we have:
[tex]P(L) = 6.5\%[/tex]
[tex]P(C) = 9.5\%[/tex]
[tex]P(L\ and\ C) = 3\%[/tex]
Required
Calculate P(L or C)
In probability:
[tex]P(A\ or\ B) = P(A) + P(B) - P(A\ and\ B)[/tex]
In this case:
[tex]P(L\ or\ C) = P(L) + P(C) - P(L\ and\ C)[/tex]
Substitute values for P(L), P(C) and P(L and C)
[tex]P(L\ or\ C) = 6.5\% + 9.5\% - 3\%[/tex]
[tex]P(L\ or\ C) = 13\%[/tex]
Convert to decimal
[tex]P(L\ or\ C) = 0.13[/tex]
Hence:
The required probability is 0.13