Answer:
B. 2,000
Explanation:
Let us assume the demand be D
Ordering cost be O
And, the holding cost be H
As we know that
[tex]EOQ = \sqrt{\frac{2\times D\times O}{H} }[/tex]
Now as per the question
[tex]1,000 = \sqrt{\frac{2\times D\times O}{H} }[/tex]
Now in the case when the demand is double and holding cost is half
So,
[tex]EOQ = \sqrt{\frac{2\times (2\times D)\times O}{H \div 2} }[/tex]
[tex]EOQ = \sqrt{\frac{4\times 2\times D\times O}{H} }\\\\EOQ = 2\times \sqrt{\frac{2\times D\times O}{H} }[/tex]
Now
= 2 × 1,000
= 2,000