For some metal alloy, a true stress of 415 MPa produces a plastic true strain of 0.475. How much does a specimen of this material elongate when a true stress of 325 MPa is applied if the original length is 300 mm

Respuesta :

Answer:

[tex]58.63\ \text{mm}[/tex]

Explanation:

[tex]\sigma_t[/tex] = True stress = 415 MPa

[tex]\varepsilon_t[/tex] = True strain = 0.475

[tex]l_i[/tex] = Original length of the alloy = 300 mm

Let us assume n = Strain hardening component = 0.25

K = Constant

True stress is given by

[tex]\sigma_t=K(\varepsilon_t)^n\\\Rightarrow K=\dfrac{\sigma_t}{(\varepsilon_t)^n}\\\Rightarrow K=\dfrac{415}{0.475^{0.25}}\\\Rightarrow K=499.89\approx 500\ \text{MPa}[/tex]

Now [tex]\sigma_t=325\ \text{MPa}[/tex]

[tex]325=500(\varepsilon_t)^{0.25}\\\Rightarrow (\dfrac{325}{500})^{\dfrac{1}{0.25}}=(\varepsilon_t)\\\Rightarrow \varepsilon_t=0.1785[/tex]

True strain is given by

[tex]\varepsilon_t=\ln(\dfrac{l_f}{l_i})\\\Rightarrow e^{\varepsilon_t}=\dfrac{l_f}{l_i}\\\Rightarrow l_f=l_ie^{\varepsilon_t}\\\Rightarrow l_f=300e^{0.1785}\\\Rightarrow l_f=358.63\ \text{mm}[/tex]

Elongation of material is [tex]l_f-l_i=358.63-300=58.63\ \text{mm}[/tex].