Consider the points below.
P(2, 0, 2),  Q(−2, 1, 3),  R(4, 2, 4)
(a) Find a nonzero vector orthogonal to the plane through the points
P, Q,
and R.

Respuesta :

Answer:

a) The nonzero vector orthogonal to the plane through the points P, Q and R is (0, 10, -10).

b) The area of the triangle PQR is [tex]5\sqrt{2}[/tex].

Step-by-step explanation:

The statement is incomplete. The complete question will be presented below:

Consider the points below: P(2, 0, 2),  Q(−2, 1, 3),  R(4, 2, 4)

(a) Find a nonzero vector orthogonal to the plane through the points

P, Q,  and R. (b) Find the area of the triangle PQR.

a) Let [tex]P(x,y,z) = (2,0,2)[/tex], [tex]Q(x,y,z) = (-2,1,3)[/tex] and [tex]R(x,y,z) = (4,2,4)[/tex]. First, we construct vectors PQ and PR by using the following formulas:

[tex]\overrightarrow{PQ} = Q(x,y,z) -P(x,y,z)[/tex] (1)

[tex]\overrightarrow{PQ} = (-2,1,3)-(2,0,2)[/tex]

[tex]\overrightarrow{PQ} = (-4,1,1)[/tex]

[tex]\overrightarrow{PR} = R(x,y,z) -P(x,y,z)[/tex] (2)

[tex]\overrightarrow{PR} = (4,2,4)-(2,0,2)[/tex]

[tex]\overrightarrow{PR} = (2,2,2)[/tex]

Then, we can find the nonzero vector orthogonal to the plane by means of the following cross product:

[tex]\vec S = \overrightarrow{PQ}\,\times\,\overrightarrow{PR}[/tex]

Which can be solved by the following determinant (Law of Sarrus):

[tex]\vec S = \left|\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\-4&1&1\\2&2&2\end{array} \right |[/tex]

[tex]\vec S = (2-2,2+8, -8-2)[/tex]

[tex]\vec S = (0, 10,-10)[/tex]

The nonzero vector orthogonal to the plane through the points P, Q and R is (0, 10, -10).

b) The area of the triangle is determined by the following formula:

[tex]A = \frac{1}{2}\cdot \|\overrightarrow{PQ}\,\times\,\overrightarrow{PR} \|[/tex]

[tex]A = \frac{1}{2}\cdot \|\vec S\|[/tex] (3)

[tex]A = \frac{1}{2}\cdot \sqrt{0^{2}+10^{2}+(-10)^{2}}[/tex]

[tex]A = 5\sqrt{2}[/tex]

The area of the triangle PQR is [tex]5\sqrt{2}[/tex].

ACCESS MORE