Answer:
[tex]P=203.3819375kg.m/s\\P\approx203.4kg.m/s[/tex]
[tex]\theta=6.4541\textdegree North East\\\theta\approx6.5\textdegree North East[/tex]
Explanation:
From the question we are told that
Mass of first jogger [tex]M=69kg[/tex]
Speed[tex]v_1=1.6m/s[/tex]
Direction [tex]d= East[/tex]
Mass of 2nd jogger [tex]M=63kg[/tex]
Speed [tex]v_2=1.5m/s[/tex]
Direction [tex]d= 14\textdegree north[/tex]
Generally equation for momentum along the the horizontal is mathematically given as
[tex]P_x=m_1v_1 +m_2v_2cos\theta[/tex]
[tex]P_x=(69)*(1.6) +(63)*(1.5)cos14[/tex]
[tex]P_x=202.0929461kg.m/s[/tex]
Generally equation for momentum along the the vertical is mathematically given as
[tex]P_y=m_2v_2cos\theta[/tex]
[tex]P_x=22.86161913kgm/s[/tex]
a)Generally the magnitude of momentum is mathematically given by
[tex]P=\sqrt{(P_x)^2+(P_y)^2}[/tex]
[tex]P=\sqrt{(202.0929461)^2+(22.86161913)^2}[/tex]
[tex]P=\sqrt{41364.21249}[/tex]
[tex]P=203.3819375kg.m/s[/tex]
[tex]P\approx203.4kg.m/s[/tex]
b) Generally the angle [tex]\theta[/tex] is mathematically given by
[tex]\theta=tan^-^1\frac{py}{px} \\[/tex]
[tex]\theta=tan^-^1\frac{22.86161913}{202.0929461}[/tex]
[tex]\theta=tan^-^1(0.1131242805)[/tex]
[tex]\theta=6.4541\textdegree North East[/tex]