An 69-kg jogger is heading due east at a speed of 1.6 m/s. A 63-kg jogger is heading 14 ° north of east at a speed of 1.5 m/s. Find (a) the magnitude and (b) the direction of the sum of the momenta of the two joggers. Describe the direction as an angle with respect to due east.

Respuesta :

Answer:

[tex]P=203.3819375kg.m/s\\P\approx203.4kg.m/s[/tex]

[tex]\theta=6.4541\textdegree North East\\\theta\approx6.5\textdegree North East[/tex]

Explanation:

From the question we are told that

Mass of first jogger [tex]M=69kg[/tex]

Speed[tex]v_1=1.6m/s[/tex]

Direction [tex]d= East[/tex]

Mass of 2nd jogger [tex]M=63kg[/tex]

Speed [tex]v_2=1.5m/s[/tex]

Direction [tex]d= 14\textdegree north[/tex]

Generally equation for momentum along the the horizontal is mathematically given as

[tex]P_x=m_1v_1 +m_2v_2cos\theta[/tex]

[tex]P_x=(69)*(1.6) +(63)*(1.5)cos14[/tex]

[tex]P_x=202.0929461kg.m/s[/tex]

Generally equation for momentum along the the vertical is mathematically given as

[tex]P_y=m_2v_2cos\theta[/tex]

[tex]P_x=22.86161913kgm/s[/tex]

a)Generally the magnitude of momentum is mathematically given by

[tex]P=\sqrt{(P_x)^2+(P_y)^2}[/tex]

[tex]P=\sqrt{(202.0929461)^2+(22.86161913)^2}[/tex]

[tex]P=\sqrt{41364.21249}[/tex]

[tex]P=203.3819375kg.m/s[/tex]

[tex]P\approx203.4kg.m/s[/tex]

b) Generally the angle [tex]\theta[/tex] is mathematically given by

[tex]\theta=tan^-^1\frac{py}{px} \\[/tex]

[tex]\theta=tan^-^1\frac{22.86161913}{202.0929461}[/tex]

[tex]\theta=tan^-^1(0.1131242805)[/tex]

[tex]\theta=6.4541\textdegree North East[/tex]