When blue light (450 nm) is shone on a particular metal surface, electrons are ejected with a kinetic energy of 2.5 x 10-20 J. Calculate the work function for this metal.

Respuesta :

Answer:

the work function of the metal is 4.167 x 10⁻¹⁹ J .

Explanation:

Given;

wavelength of the incident light, λ = 450 nm = 450 x 10⁻⁹ m

kinetic energy, K.E = 2.5 x 10⁻²⁰ J

The energy of the incident light is calculated as;

[tex]E = hf = \frac{h c}{\lambda} \\\\where;\\\\c \ is \ speed \ of \ light = 3 \times 10^8 \ m/s\\\\ h \ is \ Planck's constant = 6.626 \times 10^{-34} Js \\\\E = \frac{(6.626 \times 10^{-34})(3\times 10^8)}{450 \times 10^{-9}} \\\\E = 4.417 \times 10^{-19} \ J[/tex]

Apply Einstein photoelectric equation to determine the work function of the metal;

E = W + K.E

where;

W is the work function of the metal

W = E - K.E

W = 4.417 x 10⁻¹⁹ J - 2.5 x 10⁻²⁰ J

W = 44.17 x 10⁻²⁰ J -  2.5 x 10⁻²⁰ J

W = 41.67 x 10⁻²⁰ J

W = 4.167 x 10⁻¹⁹ J

Therefore, the work function of the metal is 4.167 x 10⁻¹⁹ J .

The work function of the photon is 4.167*10^19J

The energy of this photon can be calculated as

E = hc/λ

Data given;

  • λ = 450nm = 450*10^-9m
  • h = 6.626*10^-34JS
  • K.E = 2.5*10^-20J
  • c = 3.0*10^8m/s

Energy of the Photon

substituting the values into the equation;

[tex]E = hc / y\\E = \frac{6.626*10^-^3^4*3.0*10^8}{450*10^-^9} \\E = 4.42*10^-^1^9J[/tex]

Work Function

The work function of the photon can be calculated as;

E = K.E + Ф

4.42*10^-19 = 2.5*10^-20 + Ф

Ф = [tex]4.42*10^-^1^9 - 2.5*10^-^2^0=4.167*10^-^1^9J[/tex]

The work function of the photon is 4.167*10^-19 J

Learn more on work function  of a photon here;

https://brainly.com/question/11683155