Respuesta :
Answer:
the work function of the metal is 4.167 x 10⁻¹⁹ J .
Explanation:
Given;
wavelength of the incident light, λ = 450 nm = 450 x 10⁻⁹ m
kinetic energy, K.E = 2.5 x 10⁻²⁰ J
The energy of the incident light is calculated as;
[tex]E = hf = \frac{h c}{\lambda} \\\\where;\\\\c \ is \ speed \ of \ light = 3 \times 10^8 \ m/s\\\\ h \ is \ Planck's constant = 6.626 \times 10^{-34} Js \\\\E = \frac{(6.626 \times 10^{-34})(3\times 10^8)}{450 \times 10^{-9}} \\\\E = 4.417 \times 10^{-19} \ J[/tex]
Apply Einstein photoelectric equation to determine the work function of the metal;
E = W + K.E
where;
W is the work function of the metal
W = E - K.E
W = 4.417 x 10⁻¹⁹ J - 2.5 x 10⁻²⁰ J
W = 44.17 x 10⁻²⁰ J - 2.5 x 10⁻²⁰ J
W = 41.67 x 10⁻²⁰ J
W = 4.167 x 10⁻¹⁹ J
Therefore, the work function of the metal is 4.167 x 10⁻¹⁹ J .
The work function of the photon is 4.167*10^19J
The energy of this photon can be calculated as
E = hc/λ
Data given;
- λ = 450nm = 450*10^-9m
- h = 6.626*10^-34JS
- K.E = 2.5*10^-20J
- c = 3.0*10^8m/s
Energy of the Photon
substituting the values into the equation;
[tex]E = hc / y\\E = \frac{6.626*10^-^3^4*3.0*10^8}{450*10^-^9} \\E = 4.42*10^-^1^9J[/tex]
Work Function
The work function of the photon can be calculated as;
E = K.E + Ф
4.42*10^-19 = 2.5*10^-20 + Ф
Ф = [tex]4.42*10^-^1^9 - 2.5*10^-^2^0=4.167*10^-^1^9J[/tex]
The work function of the photon is 4.167*10^-19 J
Learn more on work function of a photon here;
https://brainly.com/question/11683155