Answer:
The co-ordinates of B (1,3 )
Step-by-step explanation:
Step(i):-
Given A( 3,4) and C( -9, -2)
Given 'B' partition AC such that
B divides AC in the ratio is 1:5 internally
Section formula
[tex](\frac{mx_{2}+nx_{1} }{m+n} ,\frac{my_{2}_+ny_{1} }{m+n} )[/tex]
Step(ii):-
Given points are
A( 3,4) and C( -9, -2) and ratio 1 : 5
(x₁ , y₁) = ( 3,4) and (x₂, y₂) = (-9,-2)
m:n = 1 : 5
The co-ordinates of B
= [tex](\frac{1(-9)+5(3) }{1+5} ,\frac{1(-2)+5(4) }{1+5} )[/tex]
= [tex](\frac{6}{6} , \frac{18}{6} )[/tex]
= (1 , 3)
Final answer:-
The co-ordinates of B (1,3 )