Solution :
Given :
length of silver cube = 2.28 cm
length of gold cube = 2.75 cm
Initial temperature = 82.8°C
Volume of silver cube is
Volume [tex]$=(\text{edge length})^3$[/tex]
= [tex]$(2.28)^3$[/tex]
[tex]$= 11.8 \ cm^3$[/tex]
mass of silver cube
Mass, [tex]$m_s = \text{density} \times \text{volume} $[/tex]
= 10.5 x 11.8
= 123.9 g
Similarly, the volume of gold cube is
Volume [tex]$=(\text{edge length})^3$[/tex]
= [tex]$(2.75)^3$[/tex]
[tex]$= 20.79 \ cm^3$[/tex]
mass of gold cube
Mass, [tex]$m_g = \text{density} \times \text{volume}$[/tex]
= 19.3 x 20.79
= 401.247 g
Now
heat lost by silver and gold cube = heat gained by water
∴[tex]$m_g .c_g \Delta T + m_s .c_s \Delta T = m_w.c_w \Delta T$[/tex]
[tex]$m_g .c_g (82.8- T) + m_s .c_s (82.8- T) = m_w.c_w (T - 20.2)$[/tex]
[tex]$401.247 \times 0.1264 (82.8- T) + 123.9 \times 0.2386 (82.8- T) = 111.5 \times 4.184 (T - 20.2)$[/tex]
Now solving the equation
[tex]$50.71 (82.8- T) + 29.56 (82.8- T) = 466.51 (T - 20.2)$[/tex]
Final temperature, T = 31.27°C