A regulation basketball has a 19 cm diameter

and may be approximated as a thin spherical

shell.

How long will it take a basketball starting

from rest to roll without slipping 4.0 m down

an incline that makes an angle of 45.4" with

the horizontal? The acceleration of gravity is

9.81 m/s.

Answer in units of s.

Respuesta :

Answer:

1.27 sec

Step-by-step explanation:

From the given information:

For the ball, Moment of inertia [tex]I = \dfrac{2}{5}mr^2[/tex]

When the height h of the ball is:

h =  4.0 sin 45.4°

and the initial potential energy = mgh

⇒ mg(4.0 sin 45.4°)

According to the conservation of energy.

[tex]mgh = \dfrac{1}{2}mv^2 + \dfrac{1}{2}I \omega^2[/tex]

[tex]mgh = \dfrac{1}{2}mv^2 + \dfrac{1}{2} ( \dfrac{2}{5}mr^2) \omega^2[/tex]

[tex]mgh = \dfrac{1}{2}mv^2 + \dfrac{1}{2} ( \dfrac{2}{5}mr^2) \dfrac{v^2}{r^2 }[/tex]

[tex]gh = \dfrac{1}{2}v^2 + \dfrac{1}{2} ( \dfrac{2}{5}) v^2[/tex]

[tex]gh = 0.5v^2 + 0.5( 0.4 )v^2[/tex]

[tex]gh = 0.5v^2 + 0.2v^2[/tex]

[tex]gh = 0.7v^2[/tex]

[tex](9.81)(4.0 sin 45.4^0) = 0.7 v^2[/tex]

[tex]27.94 = 0.7 v^2[/tex]

[tex]v^2= \dfrac{27.94}{0.7}[/tex]

[tex]v^2=39.91[/tex]

[tex]v=\sqrt{39.91}[/tex]

v = 6.32 m/s

[tex]t= \dfrac{2s}{v}[/tex]

[tex]t =\dfrac{2* 4.0}{6.32}[/tex]

t = 1.27  sec