Answer:
1.27 sec
Step-by-step explanation:
From the given information:
For the ball, Moment of inertia [tex]I = \dfrac{2}{5}mr^2[/tex]
When the height h of the ball is:
h = 4.0 sin 45.4°
and the initial potential energy = mgh
⇒ mg(4.0 sin 45.4°)
According to the conservation of energy.
[tex]mgh = \dfrac{1}{2}mv^2 + \dfrac{1}{2}I \omega^2[/tex]
[tex]mgh = \dfrac{1}{2}mv^2 + \dfrac{1}{2} ( \dfrac{2}{5}mr^2) \omega^2[/tex]
[tex]mgh = \dfrac{1}{2}mv^2 + \dfrac{1}{2} ( \dfrac{2}{5}mr^2) \dfrac{v^2}{r^2 }[/tex]
[tex]gh = \dfrac{1}{2}v^2 + \dfrac{1}{2} ( \dfrac{2}{5}) v^2[/tex]
[tex]gh = 0.5v^2 + 0.5( 0.4 )v^2[/tex]
[tex]gh = 0.5v^2 + 0.2v^2[/tex]
[tex]gh = 0.7v^2[/tex]
∴
[tex](9.81)(4.0 sin 45.4^0) = 0.7 v^2[/tex]
[tex]27.94 = 0.7 v^2[/tex]
[tex]v^2= \dfrac{27.94}{0.7}[/tex]
[tex]v^2=39.91[/tex]
[tex]v=\sqrt{39.91}[/tex]
v = 6.32 m/s
[tex]t= \dfrac{2s}{v}[/tex]
[tex]t =\dfrac{2* 4.0}{6.32}[/tex]
t = 1.27 sec