Answer:
maximum height = 0.1225 m
Explanation:
given data
H = 2m
t = 1 sec
solution
we consider here velocity of pot at lower side is u
and final velocity is v with acceleration a
time take is t/2
so
height h = u × [tex]\frac{t}{2}[/tex] - 0.5 × g × [tex](\frac{t}{2})^2[/tex] .................1
here
u = [tex]\frac{2}{t} \times ( h + \frac{gt^2}{8} )[/tex]
and
v = u +a t/2 .........................2
v = u + g t/2
v = [tex]\frac{2h}{t} + \frac{gt}{4} - \frac{gt}{2}[/tex]
v = [tex]\frac{2h}{t} - \frac{gt}{4}[/tex]
so that
maximum height is = [tex]\frac{v^2}{2g}[/tex]
maximum height = [tex]\frac{(\frac{2h}{t} - \frac{gt}{4})^2}{2g}[/tex]
put here value of h and t
maximum height = [tex]\frac{(\frac{2(2)}{1} - \frac{g(1)}{4})^2}{2g}[/tex]
maximum height = 0.1225 m