A dog sees a flowerpot sail up and then back past a window H high. If the total time the pot is in sight is t seconds, find the height above the window that the pot rises. (Let H = 2 m and t = 1.0 s, find the height above the window-- after you have found an algebraic solution.)

Respuesta :

Answer:

maximum height = 0.1225 m

Explanation:

given data

H = 2m

t = 1 sec

solution

we consider here velocity of pot at lower side is u

and final velocity is v with acceleration a

time take is t/2

so

height h = u × [tex]\frac{t}{2}[/tex]  - 0.5 × g × [tex](\frac{t}{2})^2[/tex]     .................1

here

u = [tex]\frac{2}{t} \times ( h + \frac{gt^2}{8} )[/tex]

and

v = u +a t/2      .........................2

v = u + g t/2

v = [tex]\frac{2h}{t} + \frac{gt}{4} - \frac{gt}{2}[/tex]

v = [tex]\frac{2h}{t} - \frac{gt}{4}[/tex]

so that

maximum height is  = [tex]\frac{v^2}{2g}[/tex]

maximum height = [tex]\frac{(\frac{2h}{t} - \frac{gt}{4})^2}{2g}[/tex]

put here value of h and t

maximum height =  [tex]\frac{(\frac{2(2)}{1} - \frac{g(1)}{4})^2}{2g}[/tex]

maximum height = 0.1225 m

ACCESS MORE

Otras preguntas