Solution :
A wide band pass filter has (Q < 10)
Gain in dB of overall filter = 17 dB
[tex]$F_L = 20 \ Hz $[/tex]
[tex]$F_H = 20 \ kHz$[/tex]
[tex]$17 = 10 \log A_0$[/tex]
[tex]$1.7 = \log A_0 $[/tex]
[tex]$A_0 = 5.47 $[/tex]
[tex]$F_L = 20 \ Hz $[/tex]
[tex]$F_L = \frac{1}{2 \pi R_1C_1}$[/tex]
Let [tex]$C_1 = 0.1 \mu F$[/tex]
[tex]20 = \frac{1}{2 \pi \times R_1 \times 0.1 \times 10^{-6}}$[/tex]
[tex]$R_1 = \frac{10^6}{4 \pi \times 0.1} $[/tex]
[tex]$R_1 = 79.6 \ k \Omega$[/tex]
[tex]$F_H = 20 \ kHz$[/tex]
[tex]$F_H = \frac{1}{2 \pi R_2C_2}$[/tex]
[tex]$20 \times 10^3 = \frac{1}{2 \pi R_2 \times 0.1 \times 10^{-6}}$[/tex]
[tex]$R_2 = \frac{10^3}{4 \pi \times 10^3} $[/tex]
[tex]$R_2 = 79.6 \ \Omega$[/tex]
Since the overall gain off filter is 5.47
[tex]$A_0 = 5.47$[/tex]
[tex]$A_0 = A_{01} \times A_{02}$[/tex]
[tex]$A_0 = 3.4 \times 1.6$[/tex]
[tex]$A_0 \sim 5.47$[/tex]
[tex]$A_{01} = 1+ \frac{R_F_1}{R_i_1}$[/tex]
[tex]$3.4 = 1+ \frac{R_F_1}{R_i_1}$[/tex]
[tex]$2.4 = \frac{10 k}{R_i_1}$[/tex]
[tex]$R_i_1 = 4166 \ \Omega$[/tex]
[tex]$R_i_1 = 4.1 \ k \Omega $[/tex]
[tex]$A_{02} = 1+ \frac{R_F_2}{R_i_2} $[/tex]
[tex]$1.6 = 1+ \frac{R_F_2}{R_i_2}$[/tex]
[tex]$0.6 = \frac{R_F_2}{R_i_1}$[/tex]
[tex]$R_i_2 = \frac{0.1 k}{0.6}$[/tex]
[tex]$R_i_2 = 166 \ \Omega $[/tex]