Answer:
[tex]r=3.33 cm[/tex]
[tex]d_{a}=5 cm[/tex]
Step-by-step explanation:
Let's use the radius equation to a circle inscribed into a triangle.
[tex]r=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}[/tex]
[tex]s=\frac{a+b+c}{2}[/tex]
In our case a = 13 mc, b = 13 cm and c = 10 cm
Then, s will be s = 18 cm
Then the radius will be:
[tex]r=\sqrt{\frac{(18-13)(18-13)(18-10)}{18}}=3.33 cm[/tex]
Now, the distance from the vertex to the nearest touchpont is given by:
[tex]d_{a}=\frac{1}{2}(a+c-b)=5[/tex]
This value is the same for each side.
I hope it helps you!