Answer:
450 × 10 ⁻⁹ N
Explanation:
From the given:
The direction of force is;
[tex]tan \ \theta = \dfrac{2}{2}[/tex]
[tex]\theta =tan ^{-1} (1)[/tex]
[tex]\theta = 45^0[/tex]
Hence, the angle is 45° counterclockwise from + x-axis
However;
the magnitude of the force is:
[tex]F = \dfrac{kq_1q_2}{r^2}[/tex]
[tex]F = \dfrac{(9*10^9 \ Nm^2/C^2 )*( 40 * 10^{-9} \ C ) * (10*10^{-9} \ C)}{(\sqrt{8})^2}[/tex]
[tex]F = 450 \times 10^{-9} \ N[/tex]