Answer:
The functions [tex]f(x)[/tex], [tex]g(x)[/tex] and [tex]h(x)[/tex] such that [tex]F(x) = f\,\circ\,g\,\circ \,h (x)[/tex] are [tex]f(x) = x^{2}[/tex], [tex]g(x) = \cos x[/tex] and [tex]h(x) = x+9[/tex], respectively.
Step-by-step explanation:
Let [tex]F(x) = \cos ^{2}(x+9)[/tex], if [tex]F(x) = f\,\circ\,g\,\circ \,h (x)[/tex], then we derive [tex]f(x)[/tex], [tex]g(x)[/tex] and [tex]h(x)[/tex] by using the following approach:
1) [tex]F(x) = \cos ^{2} (x+9)[/tex] Given
2) [tex]f\,\circ\,g(x) = \cos^{2} x[/tex] Definition of function composition/[tex]h(x) = x+9[/tex]
3) [tex]f(x) = x^{2}[/tex] Definition of function composition/[tex]g(x) = \cos x[/tex]
4) [tex]f(x) = x^{2}[/tex], [tex]g(x) = \cos x[/tex], [tex]h(x) = x+9[/tex] From 2) and 3)/Result
The functions [tex]f(x)[/tex], [tex]g(x)[/tex] and [tex]h(x)[/tex] such that [tex]F(x) = f\,\circ\,g\,\circ \,h (x)[/tex] are [tex]f(x) = x^{2}[/tex], [tex]g(x) = \cos x[/tex] and [tex]h(x) = x+9[/tex], respectively.