Respuesta :

Answer:

[tex]DF = 38[/tex]

[tex]GE = 40[/tex]

Step-by-step explanation:

Given

[tex]DH = 2y + 6,[/tex]

[tex]HF = 4x + 1,[/tex]

[tex]HE = 3x + 2[/tex]

[tex]GH = 20.[/tex]

See attachment for parallelogram.

Required

Find GE and DF

From the attachment:

[tex]GH= HE[/tex]

Substitute values for GH and HE

[tex]20 = 3x + 2[/tex]

Subtract 2 from both sides

[tex]20-2 = 3x + 2-2[/tex]

[tex]20-2 = 3x[/tex]

[tex]18= 3x[/tex]

[tex]3x = 18[/tex]

Divide both sides by 3

[tex]x = \frac{18}{3}[/tex]

[tex]x=6[/tex]

[tex]GE = GH + HE[/tex]

[tex]GH= HE[/tex]

So:

[tex]GE = GH + GH[/tex]

[tex]GE = 20 + 20[/tex]

[tex]GE = 40[/tex]

To find DF, we find y first:

[tex]DH = HF[/tex]

[tex]2y + 6 = 4x + 1[/tex]

Subtract 6 from both sides

[tex]2y +6- 6 = 4x + 1-6[/tex]

[tex]2y = 4x + 1-6[/tex]

Substitute 6 for x

[tex]2y = 4*6 + 1-6[/tex]

[tex]2y = 19[/tex]

Divide both sides by 2

[tex]y = \frac{19}{2}[/tex]

[tex]y = 9.5[/tex]

DF is then calculated as"

[tex]DF = DH + HF[/tex]

[tex]DF = 2y+6 + 4x+1[/tex]

Substitute values for x and y

[tex]DF = 2*9.5+6 + 4*3+1[/tex]

[tex]DF = 38[/tex]

Ver imagen MrRoyal
ACCESS MORE