Respuesta :
Answer:
[tex]2cos120°-x sin120°. cos180°= x tan150° \\ 2( - \frac{1}{2} ) - x( \frac{ \sqrt{3} }{2} ) \times ( - 1) = x{\frac{ \sin( 150°)}{ \cos(150°)}} \\ ( - \frac{2}{2} ) - \frac{ \sqrt{3} }{2}x \times ( - 1) = x \frac{ \frac{1}{2} }{ - \frac{ \sqrt{3} }{2} } \\ - 1 - ( - \frac{ \sqrt{3} }{2}x) = x( \frac{1}{2} \times ( - \frac{2}{ \sqrt{3} } )) \\ - 1 + \frac{ \sqrt{3} }{2} x = ( - \frac{2}{2 \sqrt{3} } )x \\ - 1 + \frac{ \sqrt{3} }{2} x = ( - \frac{1}{ \sqrt{3} } )x \\ - 1 + \frac{ \sqrt{3} }{2} x =( \frac{ \sqrt{3} }{ \sqrt{3} } )( - \frac{1}{ \sqrt{3} } )x \\ - 1 + \frac{ \sqrt{3} }{2} x = - \frac{ \sqrt{3} }{3} x \\ 6( - 1 + \frac{ \sqrt{3} }{2} x) = 6( - \frac{ \sqrt{3} }{3} x) \\ - 6 + \frac{6 \sqrt{3} }{2} x = - \frac{6 \sqrt{3} }{3} x \\ - 6 = \frac{ - 6 \sqrt{3} }{3}x - \frac{6 \sqrt{3} }{2} x \\ - 6 = (- 2 \sqrt{3})x - (3 \sqrt{3})x \\ - 6 = - 5 \sqrt{3} x \\ x = \frac{ - 6}{ - 5 \sqrt{3} } \\ x = \frac{ 6}{5 \sqrt{3} } \\ x = \frac{6}{5 \sqrt{3} } \times \frac{ \sqrt{3} }{ \sqrt{3} } \\ x = \frac{6 \sqrt{3} }{5 \times 3} \\ x = \frac{2\sqrt{3} }{5} [/tex]