To manufacture 30 items, it costs $2700, and to manufacture 50 items, it costs $3200. If x represents the number of items manufactured and y the cost, write the cost function.

a. Y= -25X + 4450
b. Y = 500 X 21,800
c. Y = 0.04X + 3198
d. Y = 25X + 1950

Respuesta :

Answer:

[tex]y = 25x +1950[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (30,2700)[/tex]

[tex](x_2,y_2) = (50,3200)[/tex]

Required

Determine the linear function

We start by calculating the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

So, we have:

[tex]m = \frac{3200 - 2700}{50 - 30}[/tex]

[tex]m = \frac{500}{20}[/tex]

[tex]m = 25[/tex]

The equation is then calculated as:

[tex]y - y_1 = m(x - x_1)[/tex]

This gives:

[tex]y - 2700 = 25(x - 30)[/tex]

[tex]y - 2700 = 25x - 750[/tex]

Make y the subject

[tex]y = 25x - 750 + 2700[/tex]

[tex]y = 25x +1950[/tex]

ACCESS MORE