Respuesta :

Answer:

Option C

Step-by-step explanation:

Given expression is [tex]y^{-\frac{4}{3}}[/tex].

Exponent of this expression is [tex](-\frac{4}{3})[/tex].

Option (A)

[tex]-\frac{4}{3}y[/tex]

Since, exponents and coefficients of both the expressions are different.

They are not equivalent.

Option (B)

[tex]-(\sqrt[3]{y})^4=-(y^{\frac{1}{3}})^4[/tex]

            [tex]=-y^{\frac{4}{3}}[/tex]

Here, exponent is with positive notation [tex](+\frac{4}{3})[/tex] while in the original expression it is negative [tex](-\frac{4}{3})[/tex].

Therefore, both the expressions are not equivalent.

Option (C)

[tex]\frac{1}{(\sqrt[3]{y})^4}=(\sqrt[3]{y})^{-4}[/tex]

         [tex]=y^{-\frac{4}{3}}[/tex]

Both the expressions are equivalent.

Option (D)

[tex]-(\sqrt[4]{y})^3=-(y)^{\frac{3}{4}}[/tex]

Exponents of both the expressions are different.

Therefore, not equivalent.

Option (E)

[tex]\frac{1}{(\sqrt[4]{x})^3}=(\sqrt[4]{x})^{-3}[/tex]

         [tex]=y^{-\frac{3}{4}}[/tex]

Exponent of this expression is different from the original expression.

Therefore, not equivalent.

Option (C) will be the correct option.

ACCESS MORE