Answer:
Population 15 years later P(15) = 100 + 50/π
Population 35 years later P(35) = 200 + 50/π
Population any t ≥ 0 P(t) = 35 + 50 /π + 5*t + 10*cos(π*t/5)
Step-by-step explanation:
P´(t) = 5 + 10*sinπt/5 ⇒ dP/dt = 5 + 10*sinπt/5
dP = ( 5 + 10*sinπt/5 ) *dt
P(t) = ∫ ( 5 + 10*sinπt/5 ) dt
P(t) = 5*t + 10 * ∫ sinπ*t/5* dt
P(t) = 5*t - 10*5/π *cos πt/5 + k
To determine k t = 0 P(t) = 35
P(0) = 5*0 - 50/π (1) + k
35 = - 50/π + k
k = 35 + 50/π and
P(t) = 5*t + 10*cos(π*t/5) + 35 + 50/π
b)P(t) = 35 + 50 /π + 5*t + 10*cos(π*t/5) (1)
a) Population 15 years later
P(15) = 35 + 50/π + 5*15 - 10
P(15) = 100 + 50/π
Again from equation (1)
P(35) = 35 + 50 /π + 5*35 + 10*cos(35*π/5)
P(35) = 35 + 50/π + 175 + 10*cos (7*π )
P(35) = 210 + 50/π - 10
P(35) = 200 + 50/π