Respuesta :

Answer:

Following are the solution to the given choices:

Step-by-step explanation:

In point a:

[tex]\to \sec^2x -1 = \tan^2 x[/tex]

In point b:

[tex]\to \frac{1}{\sin x} = cosec x[/tex]

In point c:

[tex]\to \sin x \cot x = \sin x \times \frac{\cos x}{ \sin x}\\[/tex]

                    [tex]= \cos x \\[/tex]

In point d:

[tex]\to \frac{\sin^2 x}{1+ \cos x} = \frac{\sin^2 x}{1+ \cos x} \times \frac{1- \cos x}{ 1- \cos x}[/tex]

               [tex]= \frac{\sin^2 x (1- \cos x)}{1- \cos^2 x}\\\\= \frac{\sin^2 x (1- \cos x)}{\sin^2 x}\\\\= 1-\cos x\\[/tex]

ACCESS MORE