Answer:
Following are the solution to the given choices:
Step-by-step explanation:
In point a:
[tex]\to \sec^2x -1 = \tan^2 x[/tex]
In point b:
[tex]\to \frac{1}{\sin x} = cosec x[/tex]
In point c:
[tex]\to \sin x \cot x = \sin x \times \frac{\cos x}{ \sin x}\\[/tex]
[tex]= \cos x \\[/tex]
In point d:
[tex]\to \frac{\sin^2 x}{1+ \cos x} = \frac{\sin^2 x}{1+ \cos x} \times \frac{1- \cos x}{ 1- \cos x}[/tex]
[tex]= \frac{\sin^2 x (1- \cos x)}{1- \cos^2 x}\\\\= \frac{\sin^2 x (1- \cos x)}{\sin^2 x}\\\\= 1-\cos x\\[/tex]