Respuesta :
Answer:
Mean = $410
Standard deviation = $48
Step-by-step explanation:
From the given information:
Low capacity High capacity
Y income ($) 350 + 25 450 + 25
= 375 = 475
P(Y) 0.65 0.35
[tex]U_Y = (375 \times 0.65) + (475 \times 0.35)[/tex]
[tex]U_Y = 243.75 + 166.25[/tex]
[tex]\mathbf{U_Y = 410}[/tex]
[tex]Var _{(Y)} = E(Y^2) - E(Y)^2[/tex]
[tex]Var _{(Y)} = \Big [(375)^2 \times 0.65 + (475)^2 \times 0.35 \Big ]- (410)^2[/tex]
[tex]Var _{(Y)} =170375 - 168100[/tex]
[tex]Var _{(Y)} = 2275[/tex]
[tex]\sigma _Y = \sqrt{Var _{(Y)}}[/tex]
[tex]\sigma _Y = \sqrt{2275}[/tex]
[tex]\mathbf{\sigma _Y \simeq 48}[/tex]
This question is based on the concept of statistics. Therefore, the mean of Y is [tex]U_y[/tex] = 410 and the standard deviation of Y is [tex]\sigma_{(Y)}[/tex] =48.
Given:
Low capacity = $350
High capacity = $450
P(X) of low capacity = 0.65
P(X) of high capacity = 0.35
Mean: μx=$385
Standard deviation: σ(x)= $48
We need to calculate the the mean and standard deviation of Y (Y represent their income on a randomly chosen purchase of this higher priced phone).
According to the question,
From the given information, it is observe that,
Low capacity High capacity
Y income ($) 350 + 25 450 + 25
= 375 = 475
P(Y) 0.65 0.35
Now, calculate the mean of Y,
[tex]U_y = (375 \times 0.65) + ( 475 \times 0.35)\\U_y = 243.75 + 166.25\\\bold{U_y = 410}[/tex]
Now, calculate the variance of Y,
[tex]Var_{(Y)} = E( Y^2) - E ( Y) ^2\\\\Var_{(Y)} = [(375)^2 \times 0.65 + (475)^2 \times 0.35] - (410)^2\\\\Var_{(Y)} = 170375 - 168100\\\\Var_{(Y)} = 2275\\[/tex]
Calculating the standard deviation of Y,
[tex]\sigma_{(Y)} = \sqrt{Var_{(Y)}} \\\\\sigma_{(Y)} = \sqrt{2275} \\\\\sigma_{(Y)} = 47.6 \approx 48[/tex]
Therefore, the mean of Y is [tex]U_y[/tex] = 410 and the standard deviation of Y is [tex]\sigma_{(Y)}[/tex] =48.
For more details, prefer this link:
https://brainly.com/question/23907081