A species of animal is discovered on an island. Suppose that the population size P(t) of the species can be modeled by the following function, where time t is measured in years.
P(t) =800/1+ 3e^-0.29t.
Find the initial population size of the species and the population size after 10 years. Round your answers to the nearest whole number as necessary.

Respuesta :

Answer:

The initial population is 200

The population after 10 years is 687

Step-by-step explanation:

Given

[tex]P(t) =\frac{800}{1+ 3e^{-0.29t.}}[/tex]

Solving (a): The initial population

Here:

[tex]t = 0[/tex]

Substitute 0 for t in P(t)

[tex]P(0) =\frac{800}{1+ 3e^{-0.29*0}}[/tex]

[tex]P(0) =\frac{800}{1+ 3e^{0}}[/tex]

[tex]P(0) =\frac{800}{1+ 3*1}[/tex]

[tex]P(0) =\frac{800}{1+ 3}[/tex]

[tex]P(0) =\frac{800}{4}[/tex]

[tex]P(0) =200[/tex]

The initial population is 200

Solving (b): Population after 10 years.

Here

[tex]t = 10[/tex]

Substitute 10 for t in P(t)

[tex]P(10) =\frac{800}{1+ 3e^{-0.29*10}}[/tex]

[tex]P(10) =\frac{800}{1+ 3e^{-2.9}}[/tex]

[tex]P(10) =\frac{800}{1+ 3*0.055}[/tex]

[tex]P(10) =\frac{800}{1+ 0.165}[/tex]

[tex]P(10) =\frac{800}{1.165}[/tex]

[tex]P(10) =687[/tex] -- approximated.

The population after 10 years is 687

ACCESS MORE