Answer:
Step-by-step explanation:
From the given information:
For X to be valid, the possible values of X should be greater than zero i.e. X > 0
If X obeys a lognormal distribution
Then; Y = In X
So,
Now,
[tex]E(X) = e^{0.353} + \dfrac{1}{2}(0.754)^2[/tex]
[tex]E(X) = 1.8913[/tex]
Also;
[tex]V(X) = e^{2 \times 0.353 + 2(0.754)^2} -e^{2\times 0.353 + (0.754)^2}[/tex]
V(X) = 2.7387
∴
SD(X) = 1.6549
[tex]P(1 < X < 2) = P(X < 2) - P(X < 1)[/tex]
= 0.108