Answer:
Following are the solution to the given question:
Step-by-step explanation:
Let [tex]x_{ij}=1[/tex] when i is the element itself is allocated to 'j' [tex]i_0[/tex]
Min
[tex]185X_{1A}+225X_{1B} +193X_{1C} +207X_{1D} +200X_{2A} +190X_{2B} +175X_{2C}+225X_{2D}+330X_{3A} +320X_{3B} +315X_{3C}+300X_{3D}+375X_{4A}+389X_{4B}+425X_{4C}+ 445X_{4D}[/tex]
Subject to:
[tex]X_{1A} +X_{1B}+X_{1C}+X_{1D}=1\\\\X_{2A} +X_{2B}+X_{2C}+X_{2D}=1\\\\X_{3A} +X_{3B}+X_{3C}+X_{3D}=1\\\\X_{4A} +X_{4B}+X_{4C}+X_{4D}=1\\\\X_{1A} +X_{2A}+X_{3A}+X_{4A}=1\\\\X_{1B} +X_{2B}+X_{3B}+X_{3B}=1\\\\X_{1C} +X_{2C}+X_{3C}+X_{4C}=1\\\\X_{1D} +X_{2D}+X_{3D}+X_{4D}=1[/tex]