Given:
The vertices of the rectangle ABCD are A(-3,4), B(-1,4), C(-1,-1) and D(-3,-1).
It is reflected over the line x=2.
To find:
The vertices of the image A'B'C'D'.
Solution:
If a figure is reflected over the line x=a, then
[tex](x,y)\to (-(x-a)+a,y)[/tex]
[tex](x,y)\to (-x+a+a,y)[/tex]
[tex](x,y)\to (-x+2a,y)[/tex]
The rectangle ABCD is reflected over the line x=2. So, the rule of reflection is
[tex](x,y)\to (-x+2(2),y)[/tex]
[tex](x,y)\to (-x+4,y)[/tex]
Using this rule, we get
[tex]A(-3,4)\to A'(-(-3)+4,4)[/tex]
[tex]A(-3,4)\to A'(3+4,4)[/tex]
[tex]A(-3,4)\to A'(7,4)[/tex]
Similarly,
[tex]B(-1,4)\to B'(5,4)[/tex]
[tex]C(-1,-1)\to C'(5,-1)[/tex]
[tex]D(-3,-1)\to D'(7,-1)[/tex]
The vertices of image are A'(7,4), B'(5,4), C'(5,-1) and D'(7,-1).
Note: All options are incorrect or not in proper format.