This is algebra 2. Would like an answer ASAP. Thanks! Between the two chunks of numbers, thats a division sign, not an addition sign.
![This is algebra 2 Would like an answer ASAP Thanks Between the two chunks of numbers thats a division sign not an addition sign class=](https://us-static.z-dn.net/files/d56/b975ae16c1b436f6c6a1ab6a66173a1a.png)
Answer:
Simplified form of [tex]\frac{x+1}{x^2+x-6}\div \frac{x^2+5x+4}{x-2}[/tex] is [tex]\mathbf{\frac{1}{(x+3)(x+4)} }[/tex]
Option A is correct answer.
Step-by-step explanation:
We need to find simplified form of [tex]\frac{x+1}{x^2+x-6}\div \frac{x^2+5x+4}{x-2}[/tex]
Solving the given expression:
[tex]\frac{x+1}{x^2+x-6}\div \frac{x^2+5x+4}{x-2}[/tex]
First we find factors of [tex]x^2+x-6[/tex]
[tex]x^2+x-6 \\= x^2+3x-2x-6\\= x(x+3)-2(x+3)\\=(x-2)(x+3)[/tex]
So, factors of [tex]x^2+x-6[/tex] are [tex](x-2)(x+3)[/tex]
Now, fining the factors of [tex]x^2+5x+4[/tex]
[tex]x^2+5x+4\\=x^2+4x+x+4\\=x(x+4)+1(x+4)\\=(x+1)(x+4)[/tex]
So, factors of [tex]x^2+5x+4[/tex] are [tex](x+1)(x+4)\\[/tex]
Now the given expression will become:
[tex]\frac{x+1}{(x-2)(x+3)}\div \frac{(x+1)(x+4)}{x-2}[/tex]
Now, converting division sign into multiplication sign:
[tex]=\frac{x+1}{(x-2)(x+3)}\times \frac{x-2} {(x+1)(x+4)}\\Cancelling, \:common\:terms\\=\frac{1}{(x+3)(x+4)}[/tex]
So, simplified form of [tex]\frac{x+1}{x^2+x-6}\div \frac{x^2+5x+4}{x-2}[/tex] is [tex]\mathbf{\frac{1}{(x+3)(x+4)} }[/tex]
Option A is correct answer.