Simplity (4^-2)^5
A.1/4^10
B. 4^3
C.1/4^3
D. 4^10

Answer:
[tex](4^{-2})^5=\dfrac{1}{4^{10}}[/tex]
Step-by-step explanation:
The given expression is : [tex](4^{-2})^5[/tex]
We need to simplify the above expression.
We know that, [tex]x^{-a}=\dfrac{1}{x^a}[/tex]
or
[tex](4^{-2})^5=(\dfrac{1}{4^2})^5\\\\=\dfrac{1^5}{(4^2)^5}\\\\\because (x^b)^c=x^{b\times c}\\\\=\dfrac{1}{4^{10}}[/tex]
So, the simplified form of the given expression is [tex]\dfrac{1}{4^{10}}[/tex]. Hence, the correct option is (A).