i need help guys Asap
![i need help guys Asap class=](https://us-static.z-dn.net/files/d15/51a1eb84e04745eafc4e4fa2cde77d2b.png)
Given:
Two triangles are given in the figure.
To find:
The m∠K and m∠J.
Solution:
In triangle FHK and IGJ,
[tex]m\angle F=m\angle I[/tex] [Given]
[tex]m\angle H=m\angle G[/tex] [Given]
Two corresponding angles are equal. So,
[tex]\Delta FHK\sim \Delta IGJ[/tex] [By AA similarity theorem]
All corresponding angles of similar figures are same.
[tex]m\angle K=m\angle J[/tex] ...(i)
[tex]4y^2=6y^2-40[/tex]
[tex]4y^2-6y^2=-40[/tex]
[tex]-2y^2=-40[/tex]
Divide both sides by -2.
[tex]y^2=20[/tex] ...(ii)
Taking square root on both sides.
[tex]y=\pm \sqrt{20}[/tex]
Now,
[tex]m\angle K=(4y^2)^\circ[/tex]
[tex]m\angle K=[4(20)]^\circ[/tex] [Using (ii)]
[tex]m\angle K=80^\circ[/tex]
[tex]m\angle K=m\angle J=80^\circ[/tex] [Using (i)]
Therefore, the m∠K is 80° and m∠J is 80°.