Respuesta :

Given:

Two triangles are given in the figure.

To find:

The m∠K and m∠J.

Solution:

In triangle FHK and IGJ,

[tex]m\angle  F=m\angle I[/tex]          [Given]

[tex]m\angle  H=m\angle G[/tex]          [Given]

Two corresponding angles are equal. So,

[tex]\Delta FHK\sim \Delta IGJ[/tex]                   [By AA similarity theorem]

All corresponding angles of similar figures are same.

[tex]m\angle  K=m\angle J[/tex]             ...(i)

[tex]4y^2=6y^2-40[/tex]

[tex]4y^2-6y^2=-40[/tex]

[tex]-2y^2=-40[/tex]

Divide both sides by -2.

[tex]y^2=20[/tex]         ...(ii)

Taking square root on both sides.

[tex]y=\pm \sqrt{20}[/tex]

Now,

[tex]m\angle K=(4y^2)^\circ[/tex]

[tex]m\angle K=[4(20)]^\circ[/tex]           [Using (ii)]

[tex]m\angle K=80^\circ[/tex]

[tex]m\angle K=m\angle J=80^\circ[/tex]        [Using (i)]

Therefore, the m∠K is 80° and m∠J is 80°.

ACCESS MORE