someone help pls asap
![someone help pls asap class=](https://us-static.z-dn.net/files/d71/ee3753c48ca201f43785bd0b773dd99a.png)
Answer:
[tex](g - f)(x) = log(x-3)- \sqrt[3]{12x +1} + 2[/tex]
Step-by-step explanation:
Given
[tex]f(x) = \sqrt[3]{12x +1} + 4[/tex]
[tex]g(x) = log(x-3)+6[/tex]
Required
Determine (g - f)(x)
In functions:
[tex](g - f)(x) = g(x) - f(x)[/tex]
So, we have:
[tex](g - f)(x) = log(x-3)+6 - (\sqrt[3]{12x +1} + 4)[/tex]
Open bracket
[tex](g - f)(x) = log(x-3)+6 - \sqrt[3]{12x +1} - 4[/tex]
Collect Like Terms
[tex](g - f)(x) = log(x-3)- \sqrt[3]{12x +1} - 4+6[/tex]
[tex](g - f)(x) = log(x-3)- \sqrt[3]{12x +1} + 2[/tex]
Answer:
[tex]→(g - f)(x) = g(x) - f(x) \\ → (log(x - 3) + 6) - (\sqrt[3]{12x + 1} + 4) \\→ log(x - 3) + 6 - \sqrt[3]{12x + 1} - 4 \\→\boxed{ log(x - 3) - \sqrt[3]{12x + 1} + 2}✓[/tex]