Answer:
Width of rectangle = 5 cm
Length of rectangle = 17 cm
Step-by-step explanation:
Let the dimensions of rectangle:
Width of rectangle = x
Length of rectangle = 3x+2
Area of rectangle = 85 cm
We need to find dimensions of rectangle i.e length and width.
The formula used is: [tex]Area\:of\:rectangle=Length\times Width[/tex]
Putting values and finding dimensions
[tex]Area\:of\:rectangle=Length\times Width\\85=3x+2 \times x\\85=3x^2+2x\\The\;equation\:will\:be:\\3x^2+2x-85=0[/tex]
Now, finding value of x using quadratic formula:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
We have, a =3, b =2 and c=-85
[tex]x=\frac{-2\pm \sqrt{(2)^2-4(3)(-85)}}{2(3)}\\x=\frac{-2\pm \sqrt{4+1020}}{6}\\x=\frac{-2\pm \sqrt{1024}}{6}\\x=\frac{-2\pm 32}{6}\\x=\frac{-2+ 32}{6}\:or\:x=\frac{-2- 32}{6}\\x=5\:or\:x=-5.6[/tex]
So, we get x = 5 and x = -5.6
But since the width of rectangle cannot be negative so, we would consider x = 5
Now, the dimensions of rectangle will be:
Width of rectangle = x = 5 cm
Length of rectangle = 3x+2 = 3(5) + 2 = 15+2 = 17 cm