(04.03 LC) Identify the domain of the exponential function shown in the following graph: (2 points) 5 4 2 TI y = 10 3 4 -5 -4 -3 -2 -1 all real numbers all positive numbers 1
![0403 LC Identify the domain of the exponential function shown in the following graph 2 points 5 4 2 TI y 10 3 4 5 4 3 2 1 all real numbers all positive numbers class=](https://us-static.z-dn.net/files/d06/6f30fc7e878cc61a678b7aa0e0ba33a3.jpg)
Answer:
The domain is all real number:
i.e.
[tex]-\infty \:<x<\infty \:[/tex]
Therefore,
[tex]\mathrm{Domain\:of\:}\:10^x\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]
Step-by-step explanation:
Given the function
y = 10ˣ
Determining the domain of the function y = 10ˣ :
We know that the domain of the function is the set of input or arguments for which the function is real and defined.
In other words,
From the graph, it is clear that the function has no undefine points nor domain constraints.
Thus, the domain is all real number:
i.e.
[tex]-\infty \:<x<\infty \:[/tex]
Therefore,
[tex]\mathrm{Domain\:of\:}\:10^x\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]