Jaylat1
contestada

(04.03 LC) Identify the domain of the exponential function shown in the following graph: (2 points) 5 4 2 TI y = 10 3 4 -5 -4 -3 -2 -1 all real numbers all positive numbers 1​

0403 LC Identify the domain of the exponential function shown in the following graph 2 points 5 4 2 TI y 10 3 4 5 4 3 2 1 all real numbers all positive numbers class=

Respuesta :

Answer:

The domain is all real number:

i.e.

[tex]-\infty \:<x<\infty \:[/tex]

Therefore,

[tex]\mathrm{Domain\:of\:}\:10^x\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

Step-by-step explanation:

Given the function

y = 10ˣ

Determining the domain of the function y = 10ˣ :

We know that the domain of the function is the set of input or arguments for which the function is real and defined.  

In other words,

  • Domain refers to all the possible sets of input values on the x-axis.

From the graph, it is clear that the function has no undefine points nor domain constraints.

Thus, the domain is all real number:

i.e.

[tex]-\infty \:<x<\infty \:[/tex]

Therefore,

[tex]\mathrm{Domain\:of\:}\:10^x\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

Answer:

The domain is all real numbers

Step-by-step explanation: