Respuesta :
Answer:
[tex]x = \pm e^{-1}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
Algebra I
- Solving quadratics
- Multiple roots
Algebra II
- Logarithms
- Euler's number e
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle ln(x^2) = -2[/tex]
Step 2: Solve for x
- Raise both sides by e: [tex]e^{\displaystyle ln(x^2)} = e^{-2}[/tex]
- Simplify equation: [tex]x^2 = e^{-2}[/tex]
- Square root both sides: [tex]x = \pm e^{-1}[/tex]
Answer:
Step-by-step explanation:
lnx^n=nlnx
[tex]\ln x^2=-2\\2\ln x=-2\\\\\ln x=-1\\\\x>0\\x=e^{-1}\\or~x=\frac{1}{e}[/tex]