Answer:
[tex]9.4\:\mathrm{cm},\\9.4\:\mathrm{cm},\\29.6\:\mathrm{cm},\\29.6\:\mathrm{cm}[/tex]
Step-by-step explanation:
A kite consists of two pairs of congruent adjacent sides. Therefore, we have the following equation:
[tex]2x+2(4x-8)=78[/tex], where [tex]x[/tex] is the length of the shorter sides.
Solving, we get:
[tex]2x+8x-16=78,\\10x=94,\\x=\fbox{$9.4\:\mathrm{cm}$}[/tex].
Plugging in [tex]x=9.4[/tex] into [tex]4x-8[/tex], we get:
[tex]4(9.4)-8,\\37.6-8,\\\fbox{$29.6\:\mathrm{cm}$}[/tex].
Therefore, two sides have length [tex]9.4\:\mathrm{cm}[/tex] and two sides have length [tex]29.6\:\mathrm{cm}[/tex].