Respuesta :

Answer:

[tex]m\angle XYV=135^{\circ}[/tex]

Step-by-step explanation:

Notice that [tex]m\angle XYV=m\angle XYW+m\angle VYW[/tex].

The diagram already marks [tex]m\angle VYW=80^{\circ}[/tex], so we just need to find [tex]m\angle XYW[/tex].

[tex]\angle TYU[/tex] and [tex]\angle XYW[/tex] are vertical angles, which means they are equal in measure.

Therefore,

[tex]m\angle TYU=m\angle XYW=6x+7[/tex]

Since there are [tex]180^{\circ}[/tex] on each side of a line, we have the following equation:

[tex]m\angle XYW+m\angle VYW+m\angle UYV=180^{\circ},\\6x+7+13+4x+80=180,\\10x+20=100,\\10x=80,\\x=8[/tex].

Plugging in [tex]x=8[/tex], we have:

[tex]m\angle XYW=6(8)+7=55^{\circ}[/tex].

Therefore,

[tex]m\angle XYV=55^{\circ}+80^{\circ},\\m\angle XYV=\fbox{$135^{\circ}$}[/tex].