Please help!!!
Composition of functions~
![Please help Composition of functions class=](https://us-static.z-dn.net/files/df7/f04fa5a082df377c612270f801f41a8d.jpg)
Answer:
[tex]\left(g\:\circ \:\:\:h\right)\left(-4\right)=-2[/tex]
Hence, option B) is true.
Step-by-step explanation:
Given
g(t) = t² - 2
h(t) = t + 4
To determine
[tex]\left(g\:\circ \:\:h\right)\left(-4\right)=?[/tex]
Using the formula
[tex]\left(g\:\circ \:\:h\right)\left(-4\right)\:=g\left(h\left(-4\right)\right)[/tex]
In order to determine g(h(-4)), first we need to determine h(-4), so
substituting t = -4 in h(t) = t + 4
h(t) = t + 4
h(-4) = -4 + 4
h(-4) = 0
so we can write
[tex]\left(g\:\circ \:\:\:h\right)\left(-4\right)\:=g\left(h\left(-4\right)\right)=g\left(0\right)[/tex]
now, to determine g(0), substitute t = 0 in g(t) = t² - 2v
g(t) = t² - 2
g(0) = (0)² - 2
g(0) = 0 - 2
g(0) = -2
so, finally we get
[tex]\left(g\:\circ \:\:\:h\right)\left(-4\right)\:=g\left(h\left(-4\right)\right)=g\left(0\right)=-2[/tex]
Therefore,
[tex]\left(g\:\circ \:\:\:h\right)\left(-4\right)=-2[/tex]
Hence, option B) is true.