Respuesta :

Answer:

The domain of the function f(x) is:

[tex]\mathrm{Domain\:of\:}\:5\left|x\right|\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

The range of the function f(x) is:

[tex]\mathrm{Range\:of\:}5\left|x\right|:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}[/tex]

Step-by-step explanation:

Given the function

[tex]f\left(x\right)=5\left|x\right|[/tex]

Determining the domain:

We know that the domain of the function is the set of input or arguments for which the function is real and defined.  

In other words,  

  • Domain refers to all the possible sets of input values on the x-axis.

It is clear that the function has undefined points nor domain constraints.

Thus, the domain of the function f(x) is:

[tex]\mathrm{Domain\:of\:}\:5\left|x\right|\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

Determining the range:

We also know that range is the set of values of the dependent variable for which a function is defined.  

In other words,  

  • Range refers to all the possible sets of output values on the y-axis.

We know that the range of an Absolute function is of the form

[tex]c|ax+b|+k\:\mathrm{is}\:\:f\left(x\right)\ge \:k[/tex]

[tex]k=0[/tex]

so

Thus, the range of the function f(x) is:

[tex]\mathrm{Range\:of\:}5\left|x\right|:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}[/tex]