Answer:
630.
Step-by-step explanation:
Given the following data;
Dimensions for cube = ¼ inches
[tex] Volume \; of \; cube = \frac {1}{4} * \frac {1}{4} * \frac {1}{4} [/tex]
Volume = 1/64 cubic inches.
For rectangular box;
Length = 2½ = 5/2 inches.
Width = 2¼ = 9/4 inches.
Height = 1¾ = 7/4 inches.
[tex] Volume \; of \; cube = \frac {5}{2} * \frac {9}{4} * \frac {7}{4} [/tex]
Volume = 315/32 inches
Therefore, to find the amount of cubes;
[tex] Number \; of \; cubes = \frac {Volume \; of \; box}{Volume \; of \; cube} [/tex]
Substituting into the equation, we have;
[tex] Number \; of \; cubes = \frac {\frac {315}{32}} {\frac {1}{64}} [/tex]
[tex] Number \; of \; cubes = \frac {315}{32} * 64 [/tex]
[tex] Number \; of \; cubes = 315 * 2 [/tex]
Number of cubes = 630