X^2 + 4x - 7x = 0
GIVE YOUR ANSWER TO THE CORRECT 2 DECIMAL PLACES
![X2 4x 7x 0 GIVE YOUR ANSWER TO THE CORRECT 2 DECIMAL PLACES class=](https://us-static.z-dn.net/files/dcf/620c970304038f0b57c78f0e22c4a6ad.png)
Answer:
x ≈ - 5.32, x ≈ 1.32
Step-by-step explanation:
x² + 4x - 7 = 0 ( add 7 to both sides )
x² + 4x = 7
To complete the square
add ( half the coefficient of the x- term )² to both sides
x² + 2(2)x + 4 = 7 + 4
(x + 2)² = 11 ( take the square root of both sides )
x + 2 = ± [tex]\sqrt{11}[/tex] ( subtract 2 from both sides )
x = - 2 ± [tex]\sqrt{11}[/tex]
Thus
x = - 2 - [tex]\sqrt{11}[/tex] ≈ - 5.32 ( to 2 dec. places )
x = - 2 + [tex]\sqrt{11}[/tex] ≈ 1.32 ( to 2 dec. places )
Answer:
x = -5.32, x = 1.32
Step-by-step explanation:
Ok. So to use the Complete the Square method, you divide the middle value by 2 and then square the number you get. This will give:
[tex](x^{2} + 4x + (\frac{4}{2}) ^2) - (\frac{4}{2}) ^2 -7 = 0[/tex]
[tex](x^{2} + 4x + 4) - 4 -7 = 0[/tex]
[tex](x^{2} + 4x + 4) - 11 = 0[/tex]
[tex](x^{2} + 4x + 4) = 11[/tex] (now factor the left side)
[tex](x + 2)(x + 2) = 11[/tex]
[tex](x + 2)^{2} = 11[/tex] (now square root both sides)
[tex]\sqrt{(x + 2)^{2}} = \sqrt{11}[/tex]
[tex]x + 2 = \sqrt{11}[/tex]
[tex]x = - 2 +/- \sqrt{11}[/tex] (+/- = plus or minus)
x = -5.32, x = 1.32