Respuesta :
Answer:
The positive value of [tex]k[/tex] will result in exactly one real root is approximately 0.028.
Step-by-step explanation:
Let [tex]h(t) = 19321\cdot k^{2}\cdot t^{2}-69\cdot t +80[/tex], roots are those values of [tex]t[/tex] so that [tex]h(t) = 0[/tex]. That is:
[tex]19321\cdot k^{2}\cdot t^{2}-69\cdot t + 80=0[/tex] (1)
Roots are determined analytically by the Quadratic Formula:
[tex]t = \frac{69\pm \sqrt{4761-6182720\cdot k^{2} }}{38642}[/tex]
[tex]t = \frac{69}{38642} \pm \sqrt{\frac{4761}{1493204164}-\frac{80\cdot k^{2}}{19321} }[/tex]
The smaller root is [tex]t = \frac{69}{38642} - \sqrt{\frac{4761}{1493204164}-\frac{80\cdot k^{2}}{19321} }[/tex], and the larger root is [tex]t = \frac{69}{38642} + \sqrt{\frac{4761}{1493204164}-\frac{80\cdot k^{2}}{19321} }[/tex].
[tex]h(t) = 19321\cdot k^{2}\cdot t^{2}-69\cdot t +80[/tex] has one real root when [tex]\frac{4761}{1493204164}-\frac{80\cdot k^{2}}{19321} = 0[/tex]. Then, we solve the discriminant for [tex]k[/tex]:
[tex]\frac{80\cdot k^{2}}{19321} = \frac{4761}{1493204164}[/tex]
[tex]k \approx \pm 0.028[/tex]
The positive value of [tex]k[/tex] will result in exactly one real root is approximately 0.028.