Respuesta :

Answer:

The value of sin Ф is [tex]\frac{5}{13}[/tex]

Step-by-step explanation:

In quadrant II, the value of

  • sin Ф is positive
  • cos Ф is negative
  • tan Ф is negative

Let us solve the question

sin²Ф + cos²Ф = 1

∵ cos Ф = [tex]\frac{-12}{13}[/tex]

→ Substitute it in the identity above

sin²Ф + ([tex]\frac{-12}{13}[/tex])² = 1

∴ sin²Ф + [tex]\frac{144}{169}[/tex] = 1

→ Subtract [tex]\frac{144}{169}[/tex] from both sides

∵ sin²Ф + [tex]\frac{144}{169}[/tex]  - [tex]\frac{144}{169}[/tex]  = 1 - [tex]\frac{144}{169}[/tex]

sin²Ф = [tex]\frac{25}{169}[/tex]

→ Take the square root of both sides

∵ √(sin²Ф)= ± [tex]\sqrt{\frac{25}{169}}[/tex]

∴ sin Ф = ± [tex]\frac{5}{13}[/tex]

Ф is in quadrant II

∴ sin Ф is a positive value

∴ sin Ф = [tex]\frac{5}{13}[/tex]

The value of sin Ф is [tex]\frac{5}{13}[/tex]

ACCESS MORE