Respuesta :

Answer:

[tex]m\angle CBD=35^{\circ}[/tex]

Step-by-step explanation:

Since there are [tex]180^{\circ}[/tex] on each side of a line and [tex]\angle ABC[/tex] is marked as a right angle, [tex]m\angle CBE=180-90=90^{\circ}[/tex].

[tex]m\angle CBE=m\angle DBE+m\angle CBD[/tex], and [tex]m\angle DBE[/tex] is given as [tex]55^{\circ}[/tex].

Therefore, we can plug in our values and solve:

[tex]90=55+m\angle CBD,\\m\angle CBD=\fbox{35^{\circ}$}[/tex].

ACCESS MORE