Respuesta :

Answer:

[tex]\mathrm{11.\:}\frac{176}{5}\pi\:\mathrm{ft^2},\\\\\mathrm{12.\:}\frac{1573}{18}\pi\:\mathrm{mi^2},\\\\\mathrm{13.\:}\frac{269.08}{24}\pi\:\mathrm{km^2}\\\\\mathrm{14.\:}\frac{252.05}{6}\pi\:\mathrm{cm^2}\\\\\mathrm{15.\:}\frac{870.75}{72}\pi\:\mathrm{yd^2}\\\\\mathrm{16.\:}\frac{5953.48}{36}\pi\:\mathrm{m^2}[/tex]

Step-by-step explanation:

The area of a sector can be given as:

[tex]\frac{c^{\circ}}{360^{\circ}}\cdot r^2\pi[/tex], where [tex]c[/tex] is the angle of the sector in degrees.

Problem 11:

[tex]\frac{88^{\circ}}{360^{\circ}}\cdot 12^2\pi=\fbox{$\frac{176}{5}\pi\:\mathrm{ft^2}$}[/tex]

Problem 12:

[tex]\frac{260^{\circ}}{360^{\circ}}\cdot 11^2\pi=\fbox{$\frac{1573}{18}\pi\:\mathrm{mi^2}$}[/tex]

Problem 13:

Convert radians to degrees:

[tex]\frac{7\pi}{12}\cdot\frac{180}{\pi}=105^{\circ}[/tex]

[tex]\frac{105^{\circ}}{360^{\circ}}\cdot 6.2^2\pi=\fbox{$\frac{269.08}{24}\pi\:\mathrm{km^2}$}[/tex]

Problem 14:

Convert radians to degrees:

[tex]\frac{5\pi}{3}\cdot \frac{180}{\pi}=300^{\circ}[/tex]

[tex]\frac{300^{\circ}}{360^{\circ}}\cdot 7.1^2\pi=\fbox{$\frac{252.05}{6}\pi\:\mathrm{cm^2}$}[/tex]

Problem 15:

[tex]\frac{215^{\circ}}{360^{\circ}}\cdot 4.5^2\pi=\fbox{$\frac{870.75}{72}\pi\:\mathrm{yd^2}$}[/tex]

Problem 16:

Convert radians to degrees:

[tex]\frac{13\pi}{18}\cdot\frac{180}{\pi}=130^{\circ}[/tex]

[tex]\frac{130^{\circ}}{360^{\circ}}\cdot 21.4^2\pi=\fbox{$\frac{5953.48}{36}\pi\:\mathrm{m^2}$}[/tex]

ACCESS MORE