Respuesta :

Answer:

[tex]x=7,\\y=6[/tex]

Step-by-step explanation:

The segment [tex]UV[/tex]consists of [tex]UZ[/tex] and [tex]VZ[/tex]. Therefore, we can write the following equation:

[tex]3y-5+2y+2=27,\\5y-3=27,\\5y=30,\\y=\fbox{$6$}[/tex].

Since [tex]UV[/tex] bisects [tex]TW[/tex], [tex]TZ\cong WZ[/tex].

Therefore,

[tex]3x+3=3y+6,\\3x+3=3(6)+6,\\3x+3=18+6,\\3x+3=24,\\3x=21,\\x=\fbox{$7$}[/tex]

ACCESS MORE