Respuesta :

Answer:

Option (3)

Step-by-step explanation:

[tex]\text{tan}(\frac{\theta}{2})=\text{sin}\theta[/tex]

[tex]\text{tan}(\frac{\theta}{2})=2\text{sin}{\frac{\theta}{2}} \text{cos}(\frac{\theta}{2})[/tex]

[tex]\frac{\text{sin}\frac{\theta}{2}}{\text{cos}\frac{\theta}{2}} =2\text{sin}{\frac{\theta}{2}}\text{cos}(\frac{\theta}{2})[/tex]

[tex]\text{sin\frac{\theta}{2}}=2\text{sin}{\frac{\theta}{2}}\text{cos}^2(\frac{\theta}{2})[/tex][tex]\text{sin\frac{\theta}{2}}=2\text{sin}{\frac{\theta}{2}}\text{cos}^2(\frac{\theta}{2})[/tex][tex]\text{sin}\frac{\theta}{2}=2\text{sin}{(\frac{\theta}{2})}\text{cos}^2(\frac{\theta}{2})[/tex]

[tex]\text{sin}\frac{\theta}{2}-2\text{sin}{(\frac{\theta}{2})}\text{cos}^2(\frac{\theta}{2})=0[/tex]

[tex]\text{sin}\frac{\theta}{2}[1-2\text{cos}^2(\frac{\theta}{2})]=0[/tex]

[tex]\text{sin}\frac{\theta}{2}=0[/tex] ⇒ [tex]\theta=0[/tex]

[tex]1-2\text{cos}^2(\frac{\theta}{2})=0[/tex]

[tex]\text{cos}(\frac{\theta}{2})=\frac{1}{\sqrt{2}}[/tex]

[tex]\frac{\theta}{2}=\frac{\pi}{4}[/tex]

[tex]\theta=\frac{\pi}{2}[/tex]

Therefore, θ = 0 and [tex]\frac{\pi}{2}[/tex] are the solutions.

Option (3) will be the answer.

ACCESS MORE