Answer:
[tex]3.1\cdot10^{23}\:\mathrm{kg}[/tex]
Explanation:
We can use Newton's Universal Law of Gravitation to solve this problem:
[tex]g_P=G\frac{m}{r^2}[/tex]., where [tex]g_P[/tex] is acceleration due to gravity at the planet's surface, [tex]G[/tex] is gravitational constant [tex]6.67\cdot 10^{-11}[/tex], [tex]m[/tex] is the mass of the planet, and [tex]r[/tex] is the radius of the planet.
Since acceleration due to gravity is given as [tex]m/s^2[/tex], our radius should be meters. Therefore, convert [tex]2400[/tex] kilometers to meters:
[tex]2400\:\mathrm{km}=2,400,000\:\mathrm{m}[/tex].
Now plugging in our values, we get:
[tex]3.6=6.67\cdot10^{-11}\frac{m}{(2,400,000)^2}[/tex],
Solving for [tex]m[/tex]:
[tex]m=\frac{2,400,000^2\cdot3.6}{6.67\cdot 10^{-11}},\\m=\fbox{$3.1\cdot10^{23}\:\mathrm{kg}$}[/tex].