Given:
Consider the below figure attached with this question.
Perimeter of triangle ABC is 13 cm.
Triangle ABC is dilated to create the triangle A'B'C'.
To find:
The perimeter of triangle A'B'C'.
Solution:
We know that, dilated figures are similar.
[tex]\text{Scale factor}=\dfrac{\text{Side of image}}{\text{Corresponding side of preimage}}[/tex]
[tex]\text{Scale factor}=\dfrac{OB'}{OB}[/tex]
[tex]\text{Scale factor}=\dfrac{5+15}{5}[/tex]
[tex]\text{Scale factor}=\dfrac{20}{5}[/tex]
[tex]\text{Scale factor}=4[/tex]
Perimeters of similar figure is proportional to the corresponding sides of that figure or equal to the scale factor.
[tex]\dfrac{\text{Perimeter of }\Delta A'B'C'}{\text{Perimeter of }\Delta ABC}=\text{Scale factor}[/tex]
[tex]\dfrac{\text{Perimeter of }\Delta A'B'C'}{13}=4[/tex]
Multiply both sides by 13.
[tex]\text{Perimeter of }\Delta A'B'C'=13\times 4[/tex]
[tex]\text{Perimeter of }\Delta A'B'C'=52[/tex]
Therefore, the perimeter of triangle A'B'C' is 52 cm.
Note: Options names are not in correct form.