5. In the right triangle shown below, the length of side AB is x, the length of side BC is x + 2, and the length of the
hypotenuse AC is x + 4. Use this information to find the length of each side. (Use the Pythagorean theorem to get
an equation, and solve for x.)

I need an answer quick!!!
It’s from the problem set to lesson 17 M.1

Respuesta :

Answer:

[tex]AB = 6[/tex]  [tex]BC = 8[/tex]   [tex]AC = 10[/tex]

Step-by-step explanation:

The picture of the triangle is missing.

Given

[tex]AC = x + 4[/tex]

[tex]BC = x + 2[/tex]

[tex]AB = x[/tex]

Required

Find x

When Pythagoras theorem is applied, we have:

[tex](AC)^2 = (BC)^2 + (AB)^2[/tex]

This is so, because AC is the hypotenuse

So, we have:

[tex](x+4)^2 = (x+2)^2 + x^2[/tex]

Open brackets

[tex]x^2 + 4x + 4x + 16 = x^2+2x + 2x + 4 + x^2[/tex]

[tex]x^2 + 8x + 16 = x^2+4x + 4 + x^2[/tex]

Collect Like Terms

[tex]x^2 -x^2 - x^2 + 8x -4x + 16 - 4 = 0[/tex]

[tex]- x^2 + 4x + 12 = 0[/tex]

Expand:

[tex]- x^2 + 6x -2x+ 12 = 0[/tex]

Factorize:

[tex]-x(x -6) -2(x- 6) = 0[/tex]

[tex](-x -2)(x- 6) = 0[/tex]

Split

[tex]-x - 2 = 0[/tex] or [tex]x - 6 = 0[/tex]

[tex]-x = 2[/tex] or [tex]x = 6[/tex]

[tex]x =-2[/tex] or [tex]x = 6[/tex]

Because [tex]BC = x + 2[/tex] and [tex]AB = x[/tex]

[tex]x =-2[/tex] can not be considered.

Hence:

[tex]x = 6[/tex]

Substitute 6 for x in

[tex]AC = x + 4[/tex]

[tex]BC = x + 2[/tex]

[tex]AB = x[/tex]

[tex]AC = 6 + 4[/tex]

[tex]AC = 10[/tex]

[tex]BC = 6 + 2[/tex]

[tex]BC = 8[/tex]

[tex]AB = 6[/tex]