Given:
The expression is
[tex]\sqrt{64}+\sqrt{-144}[/tex]
Rewriting it as a complex number in the standard form a+bi.
To find:
The missing values in the given simplification.
Solution:
We have,
[tex]\sqrt{64}+\sqrt{-144}[/tex]
It can be written as
[tex]\sqrt{64}+\sqrt{-144}=\sqrt{8^2}+\sqrt{-1\cdot 12^2}[/tex]
[tex]\sqrt{64}+\sqrt{-144}=\sqrt{8^2}+\sqrt{-1}\cdot \sqrt{12^2}[/tex]
[tex]\sqrt{64}+\sqrt{-144}=\sqrt{8^2}+i\cdot \sqrt{12^2}[/tex] [tex][\because \sqrt{-1}=i][/tex]
[tex]\sqrt{64}+\sqrt{-144}=\sqrt{8^2}+i\cdot 12[/tex]
[tex]\sqrt{64}+\sqrt{-144}=8+12i[/tex]
Therefore, the missing values are [tex]-1,\ i,\ 12i[/tex] respectively.