Answer:
[tex]P(x) = 3x - 10[/tex]
Step-by-step explanation:
Given
[tex]R(x) = 5x[/tex]
[tex]C(x) = 10 + 2x[/tex]
Required
Determine [tex]P(x) = (R - C)(x)[/tex]
In functions;
[tex](f - g)(x) = f(x) - g(x)[/tex]
So, we have:
[tex]P(x) = (R - C)(x)[/tex]
[tex]P(x) = R(x) - C(x)[/tex]
Substitute values for R(x) and C(x)
[tex]P(x) = 5x - (10 + 2x)[/tex]
Open bracket
[tex]P(x) = 5x - 10 - 2x[/tex]
Collect Like Terms
[tex]P(x) = 5x - 2x- 10[/tex]
[tex]P(x) = 3x - 10[/tex]